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SUMMARY

This report presents the details and results of an extension of the general-purpose finite element STructural Anal-

ysis Routines (STARS) to perform a complete linear aeroelastic and aeroservoelastic analysis. The earlier version

of the STARS computer program enabled effective finite element modeling as well as static, vibration, buckling,

and dynamic response analysis of damped and undamped systems, including those with pre-stressed and spinning

structures. Additions to the STARS program include aeroelastic modeling for flutter and divergence solutions, and

hybrid control system augmentation for aeroservoelastic analysis.

Numerical results of the X-29A aircraft pertaining to vibration, flutter-divergence, and open- and closed-loop

aeroservoelastic controls analysis are compared to ground vibration, wind-tunnel, and flight-test results. The open-

and closed-loop aeroservoelastic controls analyses are based on a hybrid formulation representing the interaction of

structural, aerodynamic, and flight control dynamics.

NOMENCLATURE

A

A,(k)

Aj

A

A

A_, Au, Az

AERO7

AIC

ASE

_x _ ay_ a z

B

B_

b

C

C_

C

CD, CL,CY

Ct,C.,,C.
CPM

O

DLM

dB

plant dynamics matrix in body-fixed coordinates

aerodynamic influence coefficient matrix

coefficient matrices of aerodynamic approximation, (j = 0,1 ... )

plant dynamics matrix in inertial frame of reference

solution to aerodynamic approximations Aj from equation (10)

body axis accelerations

six-degree-of-freedom, wind-tunnel based aerodynamic simulation data

aeroelastic influence coefficients

aeroservoelastic analysis

body axis perturbation accelerations

control influence matrix in body-fixed coordinates

effective stiffness correction matrix defined in equation (A-26)

control influence matrix in inertial frame of reference

wing span

output state matrix in body-fixed coordinates

elastic damping matrix

generalized damping matrix

coefficients of drag, lift, and side force

coefficients of roll, pitch, and yaw moment

constant pressure method

mean aerodynamic chord

output control matrix in body-fixed coordinates

doublet lattice method

decibel
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E

F

FEM
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GVS

ff

g

H

I:I

H*
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HG X

I

Im

i*

K

K

KEAS

k

ki

LF X
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M

M

P

i,

P,Q,R

1'1, Q1, Ri

p, q, r

Q

degree of freedom

column of identity matrices

force matrix

finite-element model

feedback controller matrix

ground vibration survey

gravity vector

aeroelastic damping

open-loop transfer function matrix of plant and all analog elements

closed-loop transfer function matrix

hybrid loop gain matrix

high frequency crossing (see table 6)

high gain crossing (see table 6)

identity matrix

imaginary part

x/=T
elastic stiffness matrix

generalized stiffness matrix

I_ + _A0 (see equation (15))

effective stiffness matrix

knots equivalent airspeed

reduced frequency

discrete set of reduced frequencies

low frequency crossing (see table 6)

low gain crossing (see table 6)

elastic inertia matrix

generalized mass matrix

1_ + _( b 2V) A2 (see equation (15))

forcing function for elastic dynamics

generalized forcing function

total roll, pitch, and yaw rate

reference (trim) roll, pitch, and yaw rate

perturbation roll, pitch, and yaw rate

generalized aerodynamic force matrix

approximation of Q

real and imaginary parts of 0

Q without the rigid air loads
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q
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R

Re

r

S

S

STARS

8

T

T,

T8

T

U,V,W

UI, VI, W_

U

U_ uj

VW

W1B, F1B,...

X

×j

X_ y_ Z

Y

Ol

0_1

¢o)

F,F/

stacked matrix of (_ for a discrete set of reduced frequencies

generalized force

displacement vector

modal displacements at sensor location

dynamic pressure

velocity and accelerations

matrix (see equation (18))

real part

reference input vector

position vector

see equations (6) and (7)

reference area of wing

STructural Analysis RoutineS

Laplace variable

thrust vector

inertial to body-fixed coordinate transformation matrices for rigid body states, i = 1, 2, 3

(see appendix B)

inertial to body-fixed coordinate transformation matrices for combined rigid, elastic, and

aerodynamic lag states

sensor interpolation matrix

sample time for digital controller

total velocities in body-fixed frame of reference

reference (trim) velocities in body-fixed frame of reference

system input vector

perturbation velocities in body-fixed frame of reference

virtual work

vibration modes (see tables 1 and 2)

system state vector in body-fixed reference frame

system state vector in inertial frame

jth lag state vector

longitudinal, lateral, and directional displacement

system output vector

angle of attack

trim angle of attack

equivalent downwash

angle of sideslip

aerodynamic lag terms

inertial to body-fixed coordinate transformation matrices, i = 1,2 (see appendix B)
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O1, _1, WI

0,¢,¢

A, A, &, _,i

r

_,_

oJ

B

D

e

I

L

q

R

r

a:, y, z

control surface deflection

generalized coordinate vector

total pitch, roll, and yaw angles

reference (trim) pitch, roll, and yaw angles

perturbation pitch, roll, and yaw angles

inertial to body-fixed coordinate transformation matrices, i = 1, 2 (see appendix B)

system time delay

angular velocity matrices

frequency

damping

Subscripts

body-fixed frame of reference

drag

elastic

inertial frame of reference

lift

pitch rate

real part of a complex number (inertial frame of reference in appendix B)

rigid

coordinate system

T matrix transpose

- 1 matrix inverse

Superscripts

INTRODUCTION

Aircraft systems are becoming increasingly complex because of the integration of distinct technologies used

to attain numerous objectives in the areas of performance, control, flying qualities, maneuver techniques, fuel ef-

ficiency, and various mission requirements. The design process must respond to specifications from all disciplines

to achieve these diverse goals and integrate accordingly. Design procedures must account for conflicting objectives

and the interaction of dynamics from the control system, structure, and aerodynamics. Coupling between these dy-

namic elements of the model can be treated passively with structural modifications and passive filtering, or actively

with control mechanisms driven by appropriate control laws. Analysis of the consequences of the design is essential

to perform safe and effective mission tasks. Aeroservoelastic analysis is used to investigate the potential problems

arising from high bandwidth control of relatively flexible aircraft by combining linear models of structure, unsteady

aerodynamics, and control system into one dynamic system. The models are augmented to address stability and

performance issues.
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Vibration,aeroelastic,andaeroservoelasticanalysesarepresentedin thisreport,computedwith theSTructural
AnalysisRoutineS(STARS)program,anintegratedanalysistool evolvedfromanearlier(ref. 1) finiteelement
structuralanalysisprogram.A numberof availablecomputerprogramsperformonlyindividualaspectsof these
analyses(refs.2-5). TheSTARSprogramwascreatedto analyzecomplexpracticalsystemssuchasaircraftand
isdesignedasaunified,compact,modular,andhighlygraphicsorientedanalysistool. Extensiveverificationand
applicationoftheprogramhasbeenmadeattheNASADrydenHightResearchFacilityinsupportof flightprograms,
suchastheX-29A, throughcorrelationof analysiswithground-testandflight-testdata.Theformulationof the
mathematicalprocedures,aprogramoutlineanddescription,andselectedresultsof theseanalysesarepresented.

FORMULATION OF NUMERICAL PROCEDURE

Extensions made to the STARS program include aeroelastic modeling and control system augmentation to the

nero-structural dynamics. An approximation for the unsteady aerodynamics is performed with a Pad6 fit to the

aerodynamic influence coefficients (AIC) to generate a state-space aero-strnctural dynamic model. This model is

transformed from the inertial to body-axis coordinate system for control system augmentation. Aeroservoelastic

analysis is achieved for either analog or digital controllers with hybrid frequency responses and eigenvalue solutions
for closed-loop modal behavior.

The matrix equation of motion for structures relevant to the current analysis has the following form

Mtl + Cq + Kq + t_A_(k)q = P(t)

in which

(1)

M

Cd
K

k

Ae(k)

q
P(t)

is the inertia matrix,

the damping matrix,

the elastic stiffness matrix,

dynamic pressure,

reduced frequency _'__'V, w and _ being the natural frequency and mean chord length, respectively,

the aerodynamic influence coefficient matrix calculated for a given
Mach number and set of k values,

the displacement vector, and

the external forcing function.

The free vibration solution is first affected fiefs. 1 and 6) on the matrix formulation

Mt]+ Kq =0

yielding the frequencies, w, and mode shapes _. Applying a transformation

(2)

q = ¢_ (3)

to equation (1) and pre-multiplying both sides by _r yields the generalized equation of motion

IVI_+ {_0+ I_+ _Q(k)_ = I_(t) (4)

where If4 = ¢rM¢, _ = ¢rC¢, I_ = ,_TK¢, Q = _TAe_ , _ = ¢rp, the modal matrix _ = ['t'T¢_¢_],

and the generalized coordinate r/= [.r/,r/, r/_J, thereby incorporating rigid body, elastic, and control surface motions,

respectively. A general Lagrangian formulation of the equations of motion for an aircraft maneuver analysis is given
in appendix A.
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ThegeneralizedaerodynamicforcematrixQ(k)
i'k(= z _-V-= _-_,'*_'e _e where the Laplace variable s = i*oJ)

0(k) = Ao + i*kA1 + (i*k)2A2 + --

may be approximated (ref. 7) with Pad6 polynomials in

with aerodynamic lag terms/_j (assume 3' = 1, 2), and

i*k i*k

i*k +/31 A3 + i*k + _2 'A4
+ (5)I o a

i*k k 2 i*k#j

The rigid airload coefficients assume the following form

Ao = OR(ki)

0_(kl) A3 A4
AI-

kl #1 82

where k_ is the smallest reduced frequency, with a value near zero, used to compute Aj forj = 0, l, 2 .... Separating

real and imaginary parts in equation (5) yields

OR(k) = 0n(k) - Ao

k2
= [-k2I k-'_-_(l

= Sn(k) _,

k2IA2]k-F_2 1 ] A3

A4

(6)

QI(k) -
Qi(k)

k
AI

IA2]] A3
A4

= Sz(k)A (7)

The unknown coefficients A 3 and A4 can be determined by substituting the previous expression for AI into

equation (7). However, the resulting solution is sensitive to the choice of _j for approximating rigid airloads. If the

elements of the aerodynamic damping matrix A1 are replaced with known damping coefficients (steady aerodynamic

derivatives), then the solution for rigid airloads becomes insensitive to the _/values.

For a chosen number of values of reduced frequencies ki, equations (6) and (7) may be combined as

0s(k2)

0_(k2)

OR(kNF)

Or(kzF)

Sa(k2)

SI( k2 )

Sa(kNF-_)

SI(kNF-I)

A2

A3

A4

(8)

or

(9)



andaleast-squaresolution
_, = [SrS]-_Sr0 (10)

yields the required coefficients A2, A3, A4. The procedure is easily extended for a larger number of lag terms, if

desired. Equation (4) may then be rewritten, assuming simple harmonic motion, as

M_+ t_)+ R71+ ?/[Aor7 + Ai _--_71+ A2 \2V/ 71+ A3xl + A4x2 + • .-] = 0 (11)

such that

from which

871
xj : 2v,, (12)

8+ _-pj

(13)

Collecting like terms gives

or

(I_ + (/Ao)71+ C+q_--¢- 1 _+ l_I+0 _ A2 i_+ qA3Xl + qA4x2 + --- : 0

Kr/+ C//+ M_+ ?/A3xl + _/A4x2 + -'-= 0

Rewriting equations (! 3) and (15) as one matrix equation

(14)

(15)

or

and

I

M

I

I x2

0 I

0 I

0 I

0 0

-qA3 -qA4

--_,I o
o --_I

71

Xl

X2

(16)

MIY_I = K'x' (17)

_t'= (M')-IK'x '

= Rx' (18)

Now rearranging the state-space vector x' as

equation (1 8) may be partitioned as

x"= L(71,71,n&XlX2) (71,_,)j

= L_uJ (19)

1
li R2,1 R2,2 j (20)

where the first matrix equation denotes the plant dynamics and the second represents the dynamics of control modes.

In the case of plant dynamics, the state-space equations become

= A& + 13u (21)



theassociatematricesandvectorsbeingdefinedas

A

f_

u

plant dynamics matrix
control surface influence matrix

generalized coordinates in inertial frame

control surface motion input into plant

and in which the terms ,i.i and l_u represent the airplane dynamics and forcing function due to control surface

motion, respectively.

Coordinate Transformation

To incorporate control laws designed to control body-axis motions, it is necessary to transform equation (21)

from the Earth-fixed (inertial) to the body-fixed coordinate system. Since no transformations are applied to elastic

and aerodynamic lag state vectors, a transformation of the form

---- 'r21(A'rl - 'r3)x -I- 'r21 _u

= Ax + Bu (22)

in which

"l"= [ T'0 0]i

Coordinate transformation matrix T1 yields the required state-space equation in the body coordinate system.

detailed description of the transformation procedure is given in appendix B.

A

Determination of Sensor Outputs

The structural nodal displacements are related to the generalized coordinates by equation (3) and the related

sensor motion can be expressed as

qs = Tsar/

= Cox (23)

where Co = [To4, 000 ], and in which T, is an interpolation matrix. Similar relations may be expressed for sensor

velocities and acceleration as

T_ ]

(24)

= Ctx (25)

where

Pre-multiplying equation (22) by C1

Ts_ 0 0 0 ]Cl = 0 TsO 0 0

ClX = CIAX + CIBu

= C2x + D2 u (26)



Adjoiningequations(23)and(25)

or

y ___ iqslLc01qs = C2 x + D2 u
(27)

y = Cx + Du (28)

which is the required sensor output relationship signifying motion at the sensors due to body motion (C) and control

surface motions (D).

Augmentation of Analog Elements and Controller

Equations (22) and (27) represent the complete state-space formulation for the aircraft incorporating structural

and aeroelastic effects. To conduct an aeroservoelastic analysis, it is essential to augment such a formulation with

associated analog elements such as actuators, sensors, notches, and pre-filters along with the controller. Denoting

the state-space equation of one such typical element in series as follows

x(i) = A(0x(0 + B(i)u <0

y(0 = C(0x(0 + D(0u(0 (29)

which can be augmented to the plant equations (22) and (27) as

or

[xl[A 0][x][B l,u,£(i) = B(i)C A(0 x(0 + B(0D

x(i) = A(0x(0 + B(0u

noting that u (1) = y from equation (27). Also

[yY0 ] = [ DC)c C0(i)] [ x_0 3 + [ D(iI))D ][u]

(30)

(31)

or

Y(0 = C(i)x(0 + D(0u (32)

becomes the new sensor output expression.

All analog elements, including a controller, can be augmented similarly at the input and the output of the plant.

Figure 1 shows a typical feedback control system with controller G. For such a system the three sets of relevant

matrix equations are

= Ax + Bu

y = Cx + Du

u = r - Gy (33)

where equation (32) is the feedback equation. The required transfer functions may be obtained by Laplace transformation

sx(8) = Ax(8) + Bu(a)

y(8) = Cx(8) + Du(s)

u(s) = r(s) -G(s)y(s) (34)



Fromequation(33)
x(s) = [sI -A]-lBu(s) (35)

andsubstitutingequation(34) in equation(33) yieldsthe requiredopen-loopfrequencyresponsefor zero
initialconditions

y(s) = [C(sI - A)-IB + D]u(a)

= H(s)u(s) (36)

where H (s) is the open-loop transfer function without the controller. To obtain the closed-loop frequency response,

equation (35) is first substituted in equation (33) to get

u(s) = r(s) - G(s)H(s)u(s)

= [I + G(s)H(a)]-lr(s) (37)

and then using equation (36) gives

y(s) = H(s)[l + G(s)H(s)]-lr(s)

= fi(s)r(s) (38)

in which I:I (s) is the closed-loop transfer function. The frequency response plots can be obtained from the transfer

matrices H (s) or fl (a) as the case may be. Associated damping and frequency values of the system may also be

calculated by solving the eigenvalue problem of the relevant A matrix for various ki values or dynamic pressures

and observing the changes in sign of the real part of an eigenvalue to detect instabilities.

In the case of a digital controller, a hybrid approach is adopted for the frequency response solution. Thus ifA ',

B t, C', and D _ are the state-space matrices associated with the controller, the related transfer function is simply

given by

G(z) = C'[zI - A']-IB p + D p (39)

and the frequency response formulation (ref. 8) for the hybrid analog-digital system with time delay r and sample
time T can be written as

y(s) = G(z)tz=_,T ] / U(8)

= G ( s, T)H *( s, 7-,T)u(s) (40)

in which

H(s)

[ZOH]

is the plant transfer function with all analog elements

is the zero-order hold complex expression -(= e -st 1-c°r _-
\

and where H*(s, %T) is now the loop gain transfer function of the hybrid system. The closed-loop frequency

response may be obtained as before by using equations (33) and (39)

y(s) = {H*(s,%T)[I + G(s,T)H*(s,r,T)] -1} r(s)

= I_l*(s, %T)r(s) (41)

To calculate the damping and frequencies, modes with natural frequencies much beyond the Nyquist frequency

are truncated. The analog plant dynamics matrix A is then transformed into the z-plane by standard discretization

procedures and augmented to controller dynamics A t. Appropriate eigenproblem solution of the final matrix yields

the required results, as previously discussed.
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DESCRIPTION OF THE STARS PROGRAM

"lhe STARS program primary modules are shown in figure 2. The associated schematic for the aeroservoelastic

analysis is shown in figure 3. Some highlights of each module are presented herein.

Preprocessor

This module enables automatic generation of finite element mesh and associated STARS input data for any con-

tinuum. The interactive graphics program is capable of generating complex structural systems through interpolation,

duplication, mirror-imaging, and cross-sectioning of modular representative forms using menu or command options.

This program is designed to run on a wide variety of commonly used graphics terminals.

Finite Element Modeling

This module is made up of many finite elements which are suitable for modeling complex practical structures.
Some basic elements are as follows

1. One-dimensional rods, bars, and beam elements,

2. two-dimensional, triangular and quadrilateral elements pertaining to membranes, shear, plate bending, and

shells including sandwich and composites,

3. three-dimensional, tetrahedron, prism, and hexahedron elements, and

4. one- and two-dimensional finite dynamic elements.

The desirable features of this module include random data input, bandwidth minimization, multiple coordinate

systems, mechanical and thei'mal loading, general interdependent deflection boundary conditions, automatic node,

and element generation as well as plot of geometry.

Aeroelastic Analysis

A newly developed constant pressure method (CPM) (ref. 9) is used for computing unsteady aerodynamic forces

for the supersonic flow, whereas the doublet lattice method (DLM) (ref. 5) is used for the corresponding subsonic

case. Both k and p-k aerodynamic stability (flutter and divergence) solution methods are available in this module.

Aeroservoelastic (ASE) Controls Analysis

In this module, the aerostructural problemis recast in the Laplace domain and the unsteady generalized aerody-

namic forces are curve fitted, using Pad6 and least-square approximations, to compute state-space matrices. Such

matrices are augmented with analog elements such as actuators, sensors, prefilters, and notch filters.

For an analog controller, the state-space matrices are appropriately augmented into that of the entire system and

the related transfer function produces the open- and closed-loop frequency responses as desired. The associated

modal frequency and damping values may also be derived by solving the eigenvalue problem of the relevant state-

space (A) matrix involving the plant dynamics.

In the case of a digital controller, a hybrid approach is adopted in which the associated transfer function is suitably

combined with that of the original analog system. This combination yields the hybrid transfer function from which

11



theopen- and closed-loop frequency responses may be computed as desired. To obtain the modal frequency and

damping values, the analog A matrix is first discretized and added to the corresponding matrix for the controller.

Furthermore, stability analyses for open-loop flutter and divergence or closed-loop control augmentation aero-

servoelastic analysis (ASE) can be performed by solving the appropriate eigenvalue problem. The former analysis

can be compared with the aeroelastic analysis using k and p-k methods, whereas the latter analysis proves to be

useful for comparing relevant flight-test results of such unstable aircraft as the X-29A.

Postprocessor

Extensive interactive plotting facilities are available for solution results pertaining to each module of the STARS

program. These facilities include contour lines of deformations and stresses as well as time-dependent functions of

dynamic responses, mode shapes, flutter and divergence plots for k, p-k and root locus methods, and phase and gain

plots pertaining to the ASE analyses as well as the corresponding damping and frequency plots.

NUMERICAL RESULTS

The presently developed integrated aero-structural-control analysis program STARS has been used extensively
to solve related problems of the X-29A forward-swept wing research aircraft (refs. 10 and 11) (fig. (4)). The X-29A

aircraft has thin wings of composite materials that are aeroelastically tailored to eliminate structural divergence

within the flight envelope. Full-span, double hinged, variable-camber flaperons and strake flaps operate with full-

authority variable-incidence canards to yield minimum trim drag. The presence of the supercritical airfoil enables

efficient transonic cruise performance and high transonic maneuvering. The canard configured aircraft is up to 35-

percent statically unstable, thus requiring appropriate feedback controls for augmented static stability. Whereas

these combined technologies result in significant improvement in overall aerodynamic and structural performance,

they may also cause adverse dynamic interaction of the flight controls with the flexible structure if not integrated

properly. Therefore an ASE analysis assumes a very important role in the design process.

In this report a comparison of ASE as well as vibration and aeroelastic analysis of the X-29A aircraft between

the STARS calculated results and test results is presented in detail.

Structural Dynamics and Aeroelastic Analysis

A finite element model of the X-29A aircraft is shown in figure 5. This somewhat reduced dynamic model

(approximately 3000 dof) was derived from the detailed stress model (7100 dof) by using an equivalent shell method

for the various appendages to reduce free vibration analysis time. The fuselage was modeled with line elements and

the vibration problem for the entire structure was solved by a block Lanczos procedure (refs. 1 and 12). A summary

of such free vibration analysis results is compared with those obtained by the ground vibration survey (GVS) as

shown in tables 1 and 2 for the symmetric and antisymmetric cases, respectively. The corresponding node line

comparisons are shown in figures 6 and 7. A more detailed presentation of the vibration results can be found in
reference 13.

Extensive aeroelastic analyses were performed to determine flutter and divergence speeds of the aircraft em-

ploying the k, p-k, and root-contour methods for comparison purposes; associated STARS unsteady aerodynamic

paneling is shown in figure 8. Such results from the STARS model are compared with GVS results in tables 3 and 4,

where the column labeled STARS (ASE) represents the results of the eigensolution of the plant A matrix, whereas

figures 9 through 12 show the various flutter solution plots.

In general, good correlation of results for various cases was observed from the results presented herein. A more

detailed mode-by-mode comparison of these results is presented in reference 13.

12



AEROSERVOELASTIC ANALYSIS-COMPARISONS WITH MEASURED DATA

The [A, B, C, D ] dynamic system computed by STARS is compared with measured data in the form of a lin-

earized aerodynamic database for the X-29A aircraft, called AEROT, and flight data. The AERO7 is a nonlinear,

six dof, rigid body wind-tunnel database with flexibility corrections to the rigid data, heretofore denoted as flexibi-

lized data. The comparisons consist of

,

.

.

°

Open-loop roots: the rigid body modal characteristics from linearized AERO7 data, the STARS rigid body

modes, and the STARS model with all rigid and elastic modes included, are represented.

Frequency responses: loop gain and longitudinal closed-loop responses are computed with measured GVS

and STARS modal data aircraft dynamics augmented to a digital flight control system. Stability margins are

also compared.

Flight data responses: longitudinal loop gains computed from STARS are compared with those generated from

flight data and linearized AERO7 data, and

Flight measured modal data: flight determined modal damping and frequency results are compared to STARS

results for the first two symmetric modes and first three antisymmetric modes.

The four flight conditions analyzed are

1. Mach 0.7 at 40,000-ft altitude,

2. Mach 0.9 at 30,000-ft altitude,

3. Mach 0.9 at 15,000-ft altitude, and

4. Mach 1.2 at 30,000-ft altitude.

Condition 1 is a low dynamic pressure case, 2 is the X-29A aircraft design point, 3 is a high dynamic pressure

condition, and 4 is a supersonic point where the CPM was used to calculate the theoretical data.

Open-Loop Roots

The rigid body roots are tabulated in tables 5(a), (b), (c), and (d) for the longitudinal modes (phugoid and short

period) and lateral-directional modes (spiral, roll, and dutch roll). Complex poles are written as (a_, O. The STARS

roots are compared to linearized rigid (without flexibility corrections) and flexibilized AERO7 data. The STARS

rigid body model (rigid) contains all unsteady lag states on the rigid body and control modes, but no elastic modes or

AERO7 flexibilized data corrections to the generalized aerodynamic stiffness and damping matrices (appendix C)

are included. The models generated with lag states on only rigid and control modes by incorporating AERO7 flexibi-

lized stability derivatives into the generalized aerodynamic stiffness and damping matrices are designated as Rigid-

flexibilized in the tables. The flexible model (flexible) consists of all rigid, elastic, and control modes with lag states

included. Flexible models are corrected with rigid AERO7 derivatives (not ftexibilized) since the flexibility effects

are already modeled by incorporation of the elastic modes.

The columns labeled Full contain roots computed from a full-order model, either containing only the rigid modes

(rigid and rigid/flexibilized) or both rigid and elastic modes (flexible). Columns designated Reduced represent roots

computed from a reduced form of the full-order model by only including the static contribution of the excluded
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states.Thosestatesdescribingrigid body dynamics are retained and all other states are excluded in the reduced-

order model to represent the static contribution of flexibility as well as unsteady aerodynamics on the rigid model.

Hence, the state vector is partitioned into rigid body states (r), and all other states (o) in the model, as

X --

and the A, B, C system is similarly partitioned as

A = Aor Aoo B = Bo

where D is unchanged. Then the reduced model is given by

_= (ArT- A_oA,_Ao_) xr

+ (Br- A_.A_o'Bo ) u

y= (Cr - CoAo_lAor) Xr

+ (D - CoAZo'Bo) u

Residualization of the states in this way results in a reduced-order model reflecting the effects of the deleted elastic

as well as unsteady dynamics on the rigid body modes. The coupling may be significant especially when the aircraft

is relatively flexible fief. 14).

The root comparisons between the STARS corrected models and AERO7 models are quite good for all modes

except the phugoid and spiral modes. In fact, STARS predicts totally damped phugoid characteristics instead of the

expected oscillatory behavior. These very low frequency modes are difficult to predict with a Pad6 fit over a wide

reduced frequency range. Results using the generalized forces at one or two of the lowest reduced frequencies with

zero or first-order Pad6 fits show more reasonable behavior for both phugoid and spiral modes. This procedure is

recommended if aeroelastic effects are being investigated on only these low frequency modes. The other modes with

more reduced frequencies included, however, are reproduced very well with the present STARS implementation of
AERO7 data.

The uncorrected STARS model does not have a well defined phugoid because the forces in the forward velocity

dof are zero (appendix C). Hence, a root at zero is evident in all cases. The other root is therefore meaningless.

A comparison of the rigid AERO7 model and the uncorrected rigid STARS model shows how well the theoretical

STARS aerodynamic model compares to a wind-tunnel derived model. The roll and dutch roll modes demonstrate

excellent agreement, while the short period is not as close in agreement, but reasonable.

Aeroelastic effects are most noticeable at flight condition 3, the high dynamic pressure transonic condition, where

differences between rigid AERO7 and flexibilized AERO7 are most evident, but still not significant. The STARS

program also demonstrates flexible effects when comparing the rigid roots with flexible model roots. Similar minor

differences between full-order and reduced-order solutions are also evident, showing that flexibility effects on rigid

body stability are essentially negligible.

In general, the comparisons validate the ability of STARS to reproduce rigid body dynamics with

flexibility effects.

Frequency Responses

Loop gains and longitudinal closed-loop frequency responses were computed and stability margins determined

for the four flight conditions with the digital normal mode (ref. 11) control system augmented to the aircraft states.
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Thelongitudinalandlateral-directionalcontrolsystemblockdiagramsareshownin figures13and14,respectively.

Hybrid frequency responses (ref. 8) were calculated to account for aliasing effects of dynamics with frequencies

higher than the Nyquist frequency of 20 Hz (126 rad/sec). Points designated OL in the diagrams represent open-

loop response locations. The CL locations in figure 13 are the longitudinal closed-loop input-output signals from

filtered pilot stick position to aircraft pitch rate response since pitch rate is the dominant feedback variable.

Stability margins for all augmented models are displayed in tables 6(a), (b), (c), and (d). Loop gains are plotted in

figures 15 to 18 (longitudinal), figures 19 to 22 (lateral), and figures 23 to 26 (directional) for all four flight conditions

analyzed, using measured GVS modal data and modes generated from the STARS. Aircraft dynamics include all

rigid, elastic, and control modes with lag states and AERO7 flexibilized data incorporated. Control system dynamics

include all elements shown in figures 13 and 14.

Longitudinal frequency response overplots in figures 15 to 18 show some dissimilarity between 30 and 100 rad/sec

due to the first two symmetric elastic modes. Pitch rate response from the first wing bending and first fuselage ver-

tical bending modes is more pronounced from the measured GVS modal data than from STARS modes. Notch

filters were designed for the X-29A aircraft to gain stabilize all modal responses to less than -6 dB in the loop gains

throughout the flight envelope. Condition 3 at Mach 0.9, 30,000-ft altitude was one of the most critical points in

the longitudinal axis. Lateral responses in figures 19 to 22 show fairly benign modal contributions to feedbacks,

and the measured model is not dramatically different from the STARS model. Supersonic condition 4 shows some

offset between the gain curves due to differences in aileron effectiveness. The directional responses in figures 23 to

26 demonstrate a much more significant discrepancy between 50 and 100 rad/sec, amounting to 20 to 30 dB in this

frequency range. Modal contributions from the first three antisymmetric elastic modes to the yaw rate feedback are

10 to 30 times greater from the measured GVS data than from the STARS model.

These observations demonstrate an important aspect of the ASE modeling process. A critical issue for an accurate

analysis is the sensor feedback motion caused by modal dynamics. Since the feedback sensors are usually located

in the fuselage, the fuselage motion at the sensor locations must be determined precisely. Sufficient accuracy is

difficult to obtain from a finite element model of the fuselage. A very detailed high-order stress model is needed to

obtain the proper sensor motion due to fuselage dynamics. Slight differences in mode shapes between the model and

actual aircraft can result in significant discrepancies in feedback dynamics between the model prediction and actual

aircraft. A ground test is essential to determine the actual feedback due to modal dynamics. The X-29A aircraft

ground tests demonstrated that the discrepancies were extremely significant (ref. 4).

Longitudinal closed-loop plots in figures 27 to 30 for all four flight conditions reveal the flexibility of the GVS

aircraft model compared to the STARS model. Closed-loop models are significantly different representations of the

dynamic interaction between the digital control system and flexible-unsteady effects, in contrast to the equivalent

open-loop description, since the dynamics beyond the Nyquist frequency are propagated through all discrete and

continuous elements simultaneously. The consequences of sampling and aliasing on these dynamics contribute to

the modal interaction between the controller and aircraft model. Analysis using the entire closed-loop spectrum

may expose possible problems in the feedback mechanism due to the interface of discrete and continuous dynamics.

The relatively small differences between STARS and GVS models in the longitudinal loop gains of figures 15 to 18

are magnified when the loops are closed in the corresponding closed-loop plots of figures 27 to 30, yet closed-loop

modal damping is adequate as a result of notch filter design. In these cases, closed-loop plots seem to exaggerate

minor differences in modal damping between GVS and STARS models, which also depend on phase relationships

between modal dynamics and feedback sensor motions.

Flight Data Responses

Loop gains were computed for the longitudinal axis from flight data (ref. 15) and are compared with the aug-

mented flexible (including all rigid, elastic, control, and lag states) STARS models in figures 31 to 34 for all flight
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conditions analyzed. Correlation is excellent for the spectrum range of the measured data. The AERO7 models are

overplotted for reference. The STARS models match the flight data as well as AERO7 models for all flight conditions

shown. These STARS models are corrected with rigid AERO7 coefficients as outlined in appendix C. Hence, the

plots show that STARS models flexibilized by incorporating the calculated mode shapes properly represent the rigid

body motion.

Flight Measured Modal Data

Figures 35 and 36 portray good agreement between flight measured modal results and STARS calculations for the

symmetric wing first bending and fuselage first vertical bending modes. The STARS data are obtained by calculating

the roots of the flexible model augmented to the digital control system. This procedure is possible only for those

modes with natural frequencies up to and near the Nyquist frequency. Such similarities between STARS and flight

results validate the STARS formulation for the entire flight envelope. Antisymmetric correlations shown in figures 37

to 39 for the antisymmetric wing first bending, fuselage first lateral bending, and fin first bending also show the

effectiveness of STARS to predict elastic behavior. The only noticeable difference between the STARS results

and flight data is in the antisymmetric wing first bending damping and frequency at lower altitudes. The STARS

program predicts a higher damping and lower frequency and is therefore less conservative at these conditions. At

higher altitudes the correlation is much better for this mode.

CONCLUDING REMARKS

The mathematical formulation of the procedures to perform vibration, aeroelastic, and aeroservoelastic analy-

ses with the structural analysis routines program has been presented, along with numerical results for the X-29A

aircraft. Interaction of structural dynamics, aerodynamics, and flight control systems is modeled using both a finite

element model and measured modes to predict flutter-divergence and aeroservoelastic phenomena. Correlation with

measured data from ground tests as well as flight measured results is used to validate the capability of STARS to

analyze complex dynamical systems such as flexible aircraft controlled with digital control systems.

Dryden Flight Research Facility

National Aeronautics and Space Administration

Edwards, California, March 20, 1989.
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Table 1. Free vibration analysis results for X-29A symmetric half-aircraft.

STARS GVS

Primary frequency, frequency,
motion Hz Hz

Rigid body 0.00 n/a

Wing first bending (W1B) 8.96 8.61

Fuselage first vertical bending (F 1B) 12.87 11.65

Fuselage second vertical bending (F2B) 19.03 24.30

Canard pitch (CP) 21.02 21.70

Wing second bending (W2B) 26.28 26.30

Wing first torsion (WIT) 30.30 36.70

Canard bending pitch (CBP) 47.70 42.20

Wing third bending (W3B) 49.52 51.50

Table 2. Free vibration analysis results for X-29A antisymmetric half-aircraft.

STARS GVS

Primary frequency, frequency,
Motion Hz Hz

Rigid body 0.130 n/a

Wing first bending (W1B) 10.08 11.3

Fuselage first bending (FIB) 12.35 12.5

Fin first bending (FinlB) 17.18 15.2

Canard pitch (CP) 21.52 21.9

Wing first torsion (W 1T) 27.15 26.8

Wing second bending (W2B) 32.88 34.8

Fin second bending (Fin2B) 41.58 45.2

Wing third bending (W3B) 45.85 51.7

Fin first torsion (FinlT) 48.95 50.0

Inboard flap torsion (IFT) 50.83 51.0

Table 3. X-29A aircraft flutter and divergence speeds for symmetric modes.

Divergence point, KEAS Flutter point, KEAS

Mode STARS STARS STARS STARS

k ASE GVS k ASE GVS

W1B 833 819 865

CP 912 910 1017

CBP - -- 694

W3B - -- 1275 1231 1222
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Table4. X-29Aaircraftflutteranddivergencespeedsforantisymmetricmodes.

Divergence point, KEAS Flutter point, KEAS
Mode STARS STARS STARS STARS

k ASE GVS k ASE GVS

Wlt3 838 833 808

F1B 848 797 924

GP 913 918 980

W2t3 1143 1157 1315

Table 5. Comparison of rigid body modal characteristics between STARS
and linearized aerodynamic database for X-29A aircraft.

Model

Mode

Linear

rigid

AERO7

Lillear

STARS rigid flexibilized STARS rigid/flexibilized
Full Reduced AERO7 Full Reduced

(a) Mach = 0.7, altitude = 40,000 ft.

STARS flexible

Full Reduced

Phugoid (0.7,0.08) 0.0,0.11 0.0,0.12 (0.07,0.08) -0.01,-0.12 -0.001,-0.12 -0.001,-0.12 -0.001,-0.12

Short period 2.1,-2.7 0.9,-1.3 0.9,-1.3 2.1,-2.7 2.3,-2.7 2.3,-2.6 2.3,-2.7 2.3,-2.6

Spiral 0.03 0.0005 0.0005 0.03 0.5 0.003 0.5 -0.001
Roll -1.I -I.1 -1.3 -1.I -1.3 -0.9 -1.3 -I.0

Dutch roll (1.9,0.05) (1.6,0.07) (1.6,0.07) (1.9,0.05) (2.2,0.05) (2.0,0.08) (2.2,0.05) (2.0,0.08)

(b) Maeh = 0.9, altitude _- 30,000 ft.

Phugoid (0.08,0.17) 0.0,0.32 0.0,0.35 (0.08,0.17) -0.003,-0.28 -0.003,-0.28 -0.003,-0.31

Short period 3.2,-4.5 1.1, -2.3 1.1, -2.3 3.3, -4.6 3.6, -4.6 3.5, -4.4 3.6, -4.5

Spiral 0.01 0.000 0.000 0.01 0.3 0.002 0.3

Roll -2.4 -2.4 -2.5 -2.4 -2.0 - 1.9 -2.2

Dutch roll (2.9,0.05) (2.7,0.08) (2.7,0.08) (2.9,0.05) 0.4,0.07) (3.0,0.13) (3.4,0.07)

-0.003,-0.32
3.5 -4.3

-0.003

-2.2

(3.1,0.12)

(c) Maeh = 0.9, altitude = 15,000 ft.

Phugoid (0.09,0.26) 0.0,-0.002 0.0, -0.002 (0.08,0.27) -0.005,-0.48 -0.005,-0.50 -0.005, -0.60 -0.005,-0.62

Short period 4.2,-6.5 1.7,-3.1 1.7,-3.1 4.4,-6.9 5.1,-7.0 4.9,-6.5 4.9,-6.8 4.7,-6.3

Spiral 0.01 0.0002 0.0002 0.01 0.2 0.002 0.2 -0.009
Roll -4.9 -4.4 -4.6 -4.9 -3.4 -3.6 -4.3 -4.7

Dutch roll 0.8,0.07) (3.7,0.10) (3.7,0.09) (3.8,0.07) (4.4,0.08) (3.8,0.15) (4.4,0.06) (4.0,0.14)

(d) Mach= 1.2, altitude = 30,000 ft.

Phugoid (0.07,0.22) 0.0,-0.32 0.0,-0.31 (0.08,0.22) 0.0,-0.40 0.0,-0.39

Short period 2.4,-4.0 1.7,-2.4 1.7,-2.5 2.4,-4.1 3.0,-5.2 3.0,-4.9

Spiral 0.006 -0.0003 -0.0003 0.006 0.208 0.003
Roll -4.1 -4.0 -3.9 -4.1 -3.2 -3.2

Dutch roll (4.2,0.08) (3.9,0.09) (3.8,0.10) (3.8,0.08) (4.6,0.08) (3.7,0.15)

0.0,-0.37

2.9,-5.2
0.16

-4.0

(4.4,0.08)

0.0,-0.37

2.9,-4.9

-0.034

-4.0

(3.5,0.14)
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Table6. Comparisonof gain/phasemarginsbetweenSTARSmodelsandmodelsbased
onlinearizedaerodynamicdataforX-29Aaircraft.

Model
STARS

Axis AERO7 rigid/ STARS
flexibilized flexibilized flexible

(a) Mach= 0.7,altitude=40,000ft.
Hteh

LF X/gainmargin
HFX/gainmargin
GainX
Phasemargin

Roll
FrequencyX
GainX
Gainmargin
Phasemargin

Yaw
FrequencyX
GainX
Gainmargin
Phasemargin

1.26/7.84 1.15/6.38 1.15/6.41
23.9/11.2 24.1/11.3 24.2/11.4

5.89 5.53 5.54
49.0 48.5 48.6

152 14.9 15.0
2.45 2.13 2.09
17.9 19.2 19.4
78.8 74.5 75.3

11.1 11.2 11.0
3.87 4.13 4.06
12.0 10.8 10.9
62.1 63.9 64.6

(b) Mach= 0.9,altitude= 30,000ft.
Pitch

LF X/gain margin

HF X/gain margin
Gain X

Phase margin

Roll

Frequency X
Gain X

Gain margin

Phase margin

Yaw

Frequency X/gain margin

LG X/phase margin

HG X/phase margin

2.23/7.88 2.01/6.54 2.01/6.74

23.8/6.65 23.6/6.49 23.5/6.47

9.64 9.16 9.33

41.3 41.2 40.3

13.7 14.0 14.0

2.69 2.5 2.33

17.0 18.9 19.6

68.0 57.3 61.4

13.2/11.3 13.6/10.5 13.6/11.2

1.46/268.0 1.47/262.0 1.50/261.0

5.64/56.1 5.94/60.10 5.65/62.7
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Table6. Concluded.

Axis

Model

STARS

AERO7 rigid/ STARS
flexibilized flexibilized flexible

(c) Mach = 0.9, altitude = 15,000 ft.
Pitch

LF X/gain margin 2.85/7.17 2.29/5.37 3.20/5.76

HF X/gain margin 26.4/6.47 26.1/6.22 25.6/5.97
Gain X 12.3 11.3 11.7

Phase margin 38.7 39.6 37.5

Roll

Frequency X 13.3 12.9 13.3
Gain X 3.47 3.42 2.93

Gain margin 15.0 16.5 18.2

Phase margin 66.0 48.2 59.9

Yaw

Frequency X 13.1 13.8 13.7

LG X/phase margin 2.36/248 2.38/241 2.46/239

HG X/phase margin 5.91/54.2 5.84/66.2 5.45/69.4

Gain margin 12.6 12.2 13.4

(d) Mach = 1.2, altitude = 30,000 ft.
Pitch

LF X/gain margin 2.08/9.98 1.49/7.85 2.33/8.07

HF X/gain margin 24.7/7.28 24.4/7.03 24.9/7.67
Gain X 9.26 8.66 8.17

Phase margin 45.8 44.8 43.5

Roll

Frequency X 12.5 12.5 12.3
Gain X 2.62 2.75 2.13

Gain margin 16.9 18.4 20.4

Phase margin 72.0 57.3 72.3

Yaw

Frequency X 13.2 13.8 13.7

LG X/phase margin 2.25/248 2.21/245 2.29/243

HG X/phase margin 6.73/48.2 6.99/54.7 6.30/60.3

Gain margin 10.3 9.45 11.0
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APPENDIX A

FORMULATION OF THE EQUATIONS OF MOTION

The equations of motion of an aircraft or a flight vehicle can be derived by considering various forces acting

on the system. In classical mechanics, a Lagrangian definition of the equations enables a suitable derivation of the

equilibrium state of a flying vehicle. This derivation requires certain physical concepts leading to the definition of

the energy and the kinematics. The energy can be expressed in terms of kinetic energy, potential energy, and the

virtual work done. The kinematics are generally expressed with respect to an inertial coordinate system which is

assumed to be at rest. In the study of space-bound vehicles, such an inertial system is referenced to a distant star.

However, in the case of an Earth-bound vehicle, the inertial system can be fixed to the center of the Earth where

it is assumed that the angular velocities and the linear motions of the Earth have little effect on the dynamics of
the aircraft.

Coordinate System and Kinematics

Let the position vector of a mass point on the aircraft be described by

where

= r'r+ r'b,+ tie, (A-l)

f< is the position vector of the mass point i

is the position vector of the rigid body-fixed coordinate system origin O with respect to inertial space

is the position vector of mass point i with respect to origin O

is a vector of the deformation of the mass i with respect to the rigid body-fixed coordinate system

If P, Q, and R are the angular velocities of the aircraft measured about the rigid body-fixed axis system, then
the velocity of the mass can be written as

0

f'i = _-_(ri) + o7 x ri (A-2)

where 07 = /:'| + Q] + Rf_. Equations (A-I) and (A-2) in matrix notation for all mass points can be written as

q = dPrq r + q_

¢1= %_1_ + qe + f_('t'_q_ + q,)

(A-3)

(A-4)

for

"'. 0

° ,

(A-5)

and

[0 o]= R 0 -P (A-6)

-c_ P o

where q_ and Q_ are rigid body displacement and velocity vectors, respectively, % is a rectangular matrix of the

rigid body mode shapes, and q_ is the elastic coordinates vector.
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Kinetic Energy

Assuming that the mass matrix M for the aircraft system is known, the kinetic energy (KE) of the system is

given by
"I

KE = _(1 M (1 (A-7)
Z

To simplify the algebra in the following development, the displacement vector q and the corresponding velocity

q will be expressed in the generalized coordinate system, that is

(A-8)

where (be is a rectangular matrix of the vibration modes. The velocity vector in terms of the generalized coordinates

is given by

q = _//+ f_rl (A-9)

Substituting equation (A-9) into (A-7) gives the kinetic energy

1
(A-m)

Potential Energy

If the stiffness matrix of the aircraft system is denoted by K, the potential energy of the system is

PE= 2 qTKq = I_T¢TK¢_? (A-11)

Virtual Work

The external forces acting on the system can be classified as those dependent on the elastic deformation and the

oscillatory motion of the aircraft, and those independent of the motion. The motion dependent forces are:

1. rigid body aerodynamic forces,

2. unsteady aerodynamic forces, and

3. body forces.

Motion independent forces are:

1. atmospheric gust loads and

2. engine thrust.
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Rigid Body Air Loads

The computed air loads in a rigid configuration involve several parameters such as angle of attack (o0, angle of

sideslip 03), angular velocities P, Q, and R, and the control deflections 6e, 6a, and 6r related to the elevator, aileron,

and rudder, respectively. Since the aerodynamic forces are nonlinear functions of these parameters, a set of panel

loads are computed at discrete values of these parameters and stored in a matrix array. In the analysis the air load

vector for derived values of the parameters is computed by interpolation. Hence the rigid air load vector (air/rigid)

symbolically is represented by

Fair/rigi d = F ( o_,fl, P, Q, R, 6e, 6a, 6r)

The virtual work done by this force is

T T (A-12)VWI = 77 dp Fair/rigid

Unsteady Aerodynamic Forces

The aerodynamic forces arising from elastic deformation and oscillatory motion can be given by

Fair�flex = qA_(k) q (A-I 3)

where A_(k) is an influence coefficient matrix and q is the dynamic pressure. The contribution to the virtual work

from the unsteady forces is

VW2 = ouTcTAe( k)_rl

= or/T [Q(k)] r7

where Q (k) are the generalized forces due to r/r and rk coordinates. As k approaches 0, Q (k) corresponds to

the steady aerodynamic loads. However the air load due to the rigid body modes such as pitch and yaw is already

included in the Fair/rigi d vector. Therefore the steady air load components caused by r/r should be subtracted from
Q (k) to give

0(k) = Q(k)- _ _ (A-14)
Q(0) 0

Then the virtual work is

VW2 = q_rO(/¢),7 (A-15)

Body Forces

Let _b,0, Xbbe the Euler angles defining the orientation of the body-fixed axis with respect to the Earth. Then the

gravity vector is

(sin0)ff = 9 cos 0 sin _b ( A- 16)

cos 0 cos 4

The body forces are then given by

[I31where E = I3 .

Ft,o_u : MEg (A-17)

The virtual work due to body forces is

VW3 = 17ToTMEff (A-18)
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Gust Loads

The dynamic loads in the gust environment (discrete or random) can be computed based on the unsteady aero-

dynamic influence coefficients discussed earlier. The contribution to the virtual work from the gust loads is

V W4 = rlrea TA_ (k) a(to) Gg_st ( A- 19)

where a(to) is an equivalent downwash computed from the gust environment and Ggust is a measure of the
gust intensity.

Engine Thrust

Future tactical fighters are expected to employ thrust vectoring to achieve superior maneuverability. There-

fore the work done in more than one axis system is an important factor in the analysis of stability and maneuver

performance. The virtual work contributed by the engine thrust is then

VW5 = r/T@TT (A-20)

where T is a vector representing the components of the thrust at specified points.

Equations of Motion

Having defined the expressions for the energy, it is then permissible to derive the equations of motion using the

Lagrangian principle, that is

d (OL) OL- 0 (A-21)-di o,7
where

L = KE- PE- VW (A-22)

in which KE is the kinetic energy given by equation (A-10), PE is the potential energy given by equation (A-11),

and VW is the virtual work as the sum of the terms given by equations (A-12), (A-15), (A-18), (A-19), and (A-20).

Performing the indicated differentiation with respect to each component of the generalized coordinates (r/) and sim-

plifying, the following equations of motion are obtained

body force thrust gust J

[general stiffness inertial stiffness unsteadyJ

(A-23)

These equations have the same form as equation (4) in the main text for describing the structural dynamics, yet

also include the additional terms to perform a nonlinear maneuver analysis. Structural damping can be included
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withthevelocitycomponents.Theinertialstiffnessmatrixgivenby• xf_TM f2_ is of significantimportancefor
thedesignof thefeedbackcontrolsystembecausethistermcontributesto thenonlinearstiffnesspropertyof the
controlsurfaces.

Thecentrifugalinertiagivenby_r [Mf2 + f_rM] ,I_is nonlinearin angularvelocitiesp, q, and r, and gives

rise to the load factor imposed on the system. The equations of motion defined by equation (A-23) can be reduced to

a first-order differential equation and solved for the state velocities. However, for performing a maneuver analysis

the velocity and acceleration terms (//_and_c) of the elastic modes may be assumed to be small compared to the

corresponding rigid body terms. The second set of equations in equation (A-23) can then be solved for r/e and

substituted in the first set of equations resulting in the following equations of motion in the rigid body coordinates

Mi_r = F [_F.ir/rigid-MEff+FT-(Mf_+.TM)_rr)r] (A-24)

where F is the aeroelastic correction matrix

F = [4_+_Qr_B-I_Z] (A-25)

in which

B = l_e - qQee( k = 0) (A-26)

The stiffness matrix I_ is an effective stiffness including the centrifugal effects.

The expression given by equation (A-26) can be treated as an eigenvalue problem for the determination of the

wing divergence speed (_,_iv).

The rigid body velocity and acceleration vectors can be written as

/iVW0r = p

and

O

W
P

Thus equation (A-24) reduces to a first-order equation in the state velocities. For a given time history of the control

variables, a transient maneuver performance of the aircraft can be determined.

If the inertia term M 0r is set to zero, equation (A-24) reduces to a nonlinear steady trim equation.
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APPENDIX B

INERTIAL-TO-BODY-FIXED COORDINATE TRANSFORMATION

The inertial frame reference axes are used to compute the aerodynamic forces resulting from the free vibration

modes of unconstrained elastic bodies. However, for stability and control analysis the preferred coordinate system

is the body-fixed coordinate system. If the inertial frame and reference axes are inclined with respect to each other

in a trim state through the Euler angles (V, O, O), then the velocities at the aircraft center of gravity in the inertial

frame and body-fixed reference axes are related by

? = r (v,o,¢) v

I W B

in which

cos _u cos 0
F = sin • cos 0

-sinO

cos • sin 0 sin • - sin • cos

sin • sin 0 sin _ + cos • cos

cos 0 sin

Similarly, the accelerations in the inertial frame are given by

? : r (,v,o,¢)
2 r

= r (,v,o,¢)

cos W sin 0 cos * + sin _u sin * ]

]sin • sin 0 cos • - cos • sin

cos 0 cos

¢ +n V

W w

Av

A, B

where fl is the skew-symmetric angular velocity matrix. Considering the accelerations in the body coordinate system

+f_ V

W

0 -R Q
+ R 0 -P

-Q e o

[-Rv+Qw]
RU - PW

-QU + PV

Av = ¢

A, . W

W

W

Now with reference to a trim state at orientation (_Vl, 01,*t),

_ = _1

0 = 01

U= UI

V = Vl

W=W,

P= PI

Q = Q,
R= R1
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the perturbations are

`0=`01 +

0=01+

_P = _1+

U=UI+

V=V,+

W=Wl+

P=Pl+

Q=Ql+

R=RI+

¢
8

t_

"o

19

P

q

?-

The perturbed velocities in the inertial frame become

9 = F1

forF1 = r(hul,Ol,¢t),and

/_1 =
I Az,¢

Av,¢

Az,¢

,)1) + _,1

w

Ax,8 A:r,¢

Av,O AV,¢

Az,0 Az,¢

The elements Of Al are as follows

Ax,¢ = VI (cos -01 sin O_ cos qq + sin -01 sin q'l)

+ Wl(cos .0_ sin qq - sin "01 sin O1 cos qq)

A_,0 = -U1 sin O1 cos q5 + V1 sin ,01 cos O1 cos W_

+ W1 cos -01 cos O_ cos _t

A._ = -Ut cos O_ sin _tq - Vl(sin -01 sin O1 sin q"t + cos -or cos %)

+ Wl(sin -01 cos qJl - cos -01 sin Oa sin °/1)

Av,,_ = Vt (cos -01 sin O1 sin 'fl - sin -01 cos qq

- W_ ( sin `01 sin Ol sin '1'1 + cos -01 cos q'l )

Av,o = -U1 sin O_ sin _1 + VI sin -01 cos O_ sin q-q

+ W1 cos -01 cos O1 sin _tq

Av,, k = Ul cos 01 COS _d 1

+ VI ( sin -01 sin O1 cos WI - cos "01 sin W1)

+ Wl (cos ¢/'1 sin O1 cos W1 + sin -01 sin W1 )

Az,_ = VI cos "01 COSO1 -- Wl sin -01 cos O!

Az,0 = -U1 cos O1 - VI sin `01 sin O1 - W1 cos ,01 sin O1

Az, ¢ = 0

These equations are consistent.with the formulation contained in reference 15 for general reference conditions

with the inertia axes initially oriented to coincide with the body axes through Fl.
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Thebody-axisperturbationaccelerationsare

all = I)

az B

+_ +£ (p)q
?-

where

0 -RI QI
= R1 0 -Pi

-Q1 PI 0

and 0

= [-W1v1

Perturbed accelerations in the inertial frame then become

(')i) = rl all

I ,_z B

Wl --V1

0 U1

-Ul 0

=F1 ) + FI_ v + F1/_ q

O \w r

The state-space equations of motion in the inertial frame are given by

xI, = ArXl, + Bru

and the required state-space equations in the body-fixed coordinate system

ing transformations

are obtained by the follow-

X h = TIXBr

t

¢ 2;

Y
i

z

¢
0

_b = TI
+.

$
0

¢
It

1/)

P

q

where the primed coordinates denote inertial displacement components of the aircraft center of gravity projected

onto the body coordinate system, and the relevant matrices are given as

o 0]L
0 I 0 0

TI - [ 0 A1 FI 0

0 ._2 0 F2
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with

i-"2

and

/k 2

Similarly for state-space velocities

where

and

1
= 0

0

T2 =

sin (I) 1 tan O_

COS _1

O_ tan e_

-qq cos O_

cos _ tan O_

- sin *_

_ o
0 0

• _ tan e_ 0

Y_I, = T2 XB, + T3 XB,

T 3 =

rh 0 0 0

0 r'2 0 0

Fxl_ Fx_, Fl 0

0 0 0 I"2

0 A1 0 0

0 _-2 0 0

0 0 0 0

0 0 0 0

In the following analysis no transformations are applied to elastic and aerodynamic lag state vectors. Thus the

full-state vector transformations are given by

Then

or

[T,oo]i
t2=IT200It
t3=[T3000]

,_z= _.xl + flu

t2XB =AtlxB -- T3XB + ]_U

t_x_ = (Xt, - %) ,,_ + _u

XB = t£ 1 (/{tl - T3)XB + t2'l_u

and outputs are given by

= AxB + Bu

y = (_tlxB + Du

= CxB + Du
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APPENDIX C

STABILITY DERIVATIVES

Determination of Static and Dynamic Stability Derivatives

Longitudinal Derivatives

A brief outline is given of the relations used in the evaluation of the longitudinal stability derivatives from un-

steady generalized aerodynamic forces. For small perturbations of pitch rate, assuming a wings-level trim condition,

(q = 6) and the rate of change of angle of attack (&), the lift and moment coefficients of an aircraft can be written
in the Maclaurin series as

CL = CLo + CLoa + Cry, _ + CL_ "'" (C-l)

Cy=CMo + C_,oL + CM_ _ + C_, _ "-" (C-2)

where _ is the mean aerodynamic chord and V is the flight velocity. For harmonically oscillating motion at rcduced

frequency k

0 = Ooe_'t -- = ikO (C-3)
'2V

• &_
ol = Otoe_t,_ = ika (C-4)

2V

Substituting equations (C-3) and (C-4) into (C-l) and (C-2) and omitting the constant terms CLo and CMo, the

first-order lift and moment coefficients can be written as

CL = CL_O_ + ikCL, Ol + ikCL,O ... (C-5)

CM = CM_,a + ikCM, a + ikCM_O ... (C-6)

For pure pitching motion (0 = a) and pure plunge (h)

Qho [CL,, + ik(CL_+ CL,)]OI (C-7)CL- S -

where S is the area of the wing and Qm,, is the generalizcd force acting on mode m due to mode r_ written with

respect to an inertial axis system aligned with the body axcs (rcf. 15) at a = 0. The first rigid body mode is thc pure

plunge mode and the second is the pure pitch motion.

For a unit value of or, the stability coefficients are written as

Re (Qho)
CL, = S "'" (C-9)
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-Re (Qoo)
CM,, = S "'"

Im ( Qho)
CL. + CL_ = kS "'"

- Im (Q,88)
Cu. + Cut - kS

For pure harmonic plunging motion h = hoe i''t, the angle of attack (a) can be written as

...
and

q=O

then from equations (C-5) and (C-6), the lift and moment coefficients for plunging motion are given by

(c-it)

(C-11)

(C-12)

(C-13)

(C-14)

(C-15)

Letting (_) 1, the dynamic stability derivatives can be written as

Re(Qhh)
CL. - k z S

Re(Qoh)
Cu. - k z S

Finally from equations (C-11) and (C-12)

(C-16)

(C-17)

Im( Q hO) Re(Qhh)
CLq -- kS k 2 S (C- 18)

Im( Qoo) Re(Qoh)
CM_ - kS + k2 S (C-19)

Thus the six longitudinal stability derivatives can be determined from the pure plunge and pitching oscillatory mo-

tions at an infinitesimally small reduced frequency.

Lateral-Directional Derivatives

The side force, rolling moment, and yawing moment coefficients under small perturbation assumptions can be

represented by

cy: cy,e + % $g

Ce = Ce_3 + Cep 2-V

+ Cy, -_ + Cy v ... (C-20)

+ C_, _ + C& ... (C-21)
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As in the longitudinal case, Q_. will be used to represent the generalized force acting upon mode m due to

the motion of mode n. The rigid modes (y, ¢, ¢) are orthogonal to each other. The area of the wing is S, b is the

span, V the velocity, and k is a reduced frequency. The side force generated by pure yawing motion (8 = -_b) is

written as

Rewrite equation (C-20) as

Cr(¢)= vQ_¢
S

•_e _8)]
= Y _(-3) + ImQ,C,_kS("2"V) ( J

(C-23)

- + - ... (C-24)

Comparing equations (C-23) and (C-24), for a unit value of y one obtains

and

(C-25)

(C-26)

To evaluate Cy a and Gg, the side force due to pure harmonic lateral motion is considered, (Y = yoei"t),

and

then equation (C-20) becomes

#-V

p = 'it =0

(C-27)

(C-28)

Let (_) =1 toget

Re(Q_v) (C-29)
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andfromequation(C-26)

Thesideforcegeneratedbypurerollingmotion(p = ¢) is

(c-30)

Cz(¢)= YQ_¢
S

_-__ ¢ + ,,_--Vg-q,]

=-y[_¢ +

_ . ImQ_

since ReQ_, is zero. Now comparing the like term in equation (C-20), and unit y,

Cy,= ks;

Hence, all four side-force derivatives are extracted from equations (C-25), (C-29), (C-30), and (C-32).

The rolling moment generated by pure yawing motion (/3 = -¢) is written as

c_(¢) = ¢Q_¢
S

Rewrite equation (C-21) as

Ct = C_p# + Clp 2-V + cl,

(c-31)

(C-32)

(C-33)

(C-34)
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Comparingequations(C-33)and(C-34),for¢ oneobtains

and

Fromequation(C-27),equation(C-21)becomes

Ce = [ikCe_-
1_

Let(_) = 1 toget

and from equation (C-36)

Ce_ - k 2 S

[ ReQ,_¢, ImQ¢,¢ ] ( _ )ce, = L k2s ks

The rolling moment generated by pure rolling motion (p = q_) is

ce(¢) - ¢Q_4,
S

(c-35)

(c-36)

(C-37)

(C-38)

(C-39)

=-d°IrnQ¢_ (_) (_V )TkS (C-40)

since ReQ¢,¢ is zero• Now comparing the like terms in equations (C-21) and (C-40), and unit ¢,

ImQ,, (_) (C-41)ks
Hence, all four rolling moment dcrivatives are extracted from equations (C-35), (C-38), (C-39), and (C-41).

The yawing moment generated by pure yawing motion (fl = -¢) is writtcn as

C,,(f) - _Q'_¢_
S

=-¢[-_¢+ iImQ'P'_ ¢]SJ

•we _5)]= _, __(__) + ImQ¢¢kS ('-_) (

(C-42)
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Rewriteequation(C-22)as

5V

Comparing equations (C-42) and (C-43), for a unit value of ¢, one obtains

and

Again from equation (C-27), equation (C-22) becomes

(C-43)

Let(g) = ltoget

and from equation (C-26)

(C-44)

(C-45)

-kecna(_)] (2--_) = -Q¢----_¢S"" (C-46)

Cnr = l ]¢28 ]¢S J

The yawing moment generated by pure rolling motion (p = ¢) is

c.(¢) -
S

- ¢/'k--_QS_4' (_)(2P---_) (C-49,

since ReQ¢¢ is zero. Now comparing the like term in equation (C-22), and unit ¢,

Cry- ImQ_c_ (_)kS (C-50)

Hence, all four yawing moment derivativcs are extracted from cquations (C-44), (C-47), (C-48), and (C-50).
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Aerodynamic Derivative Representation

The relationship between airplane forces and moments in the inertial axis system and airplane stability deriva-

tives is summarized in tables C-1 and C-2 for the longitudinal (symmetric) and lateral-directional (antisymmetric)

analyses, respectively. The quantity oq is the trim angle of attack. Column headings designate rigid body deflec-

tion dof, and row labels represent direction of resulting air loads whether they be linear forces or angular moments

caused by the deflections. The generalized forces at a very low reduced frequency (k <0.01) define the generalized

aerodynamic stiffness and damping matrices from which stability derivatives can be evaluated. If the derivatives

are available from other sources, such as wind-tunnel or flight-test results, they may be incorporated in preference to

the theoretically derived values. For coefficients pertaining to different reference points on the aircraft, corrections

must be made to the derivatives (ref. 16). The inertial and body axis coordinate systems are aligned with each other

at trim _1.

It is implicitly assumed in tables C-1 and C-2 that the derivatives are defined with reference to the body axes.

Longitudinal stability coefficients defined with respect to the stability axes remain unchanged, yet lateral--directional

coefficients must be adjusted as a function of angle of attack, as in table C-3, for a proper implementation into the

generalized aerodynamic matrices defined in the inertial axis system.

Whether or not elastic modes are included will determine which stability derivatives (rigid or flexibilized) should

be implemented into the matrices of tables C-l, C-2, or C-3. When all elastic modal dof (elastic generalized coordi-

nates) are included in the dynamic analysis, the derivatives used should be only rigid coefficients (not flexibilized).

The elastic modes included in the analysis will include the elastic increments to the rigid body derivatives through

the generalized displacements at low values of reduced frequency. A rigid body analysis, without elastic modal dof,

requires using the flexibilized derivatives from another source to account for elastic static deformation. No z-dof

aeroelastic forces exist since the panel aerodynamics that are not perpendicular to lifting surfaces are not computed.

Hence, the generalized matrix coefficients for the z-dof generalized coordinate must include the elastic increment

for rigid and elastic analyses. The forces corresponding to the a;-dof are therefore zero for all but the lowest reduced

frequency. When a combined rigid--elastic analysis is required with a small subset of elastic modes included, such

as when closed-loop roots are desired in a digital system, the rigid coefficients from another source should be used.

In all analyses, the correction rigid body data is smoothed into the real and imaginary force matrices at the lowest

reduced frequencies.

Flight control applications require an accurate description of stability characteristics over a frequency range

dependent on the dynamics of the controller. In the STARS formulation, the three symmetric dof (x, z, 0) and three

antisymmetric dof (y, _b,_b)are combined to model linear six-dof motion about a reference flight condition. Various

methods exist to approximate flexibilized dynamics with residual approximations when some modes are deleted

from the analysis. Presently STARS can be run with all flexible modes included or some truncated, but residual

stiffness or flexibility effects are not used as a reduced order approximation of elastic dynamics.
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TableC-1. Stabilityderivativerepresentationin therigid-bodysymmetricgeneralized
aerodynamicstiffnessanddampingmatrixelements.

(a) Rigidbody,symmetricgeneralizedaerodynamicstiffnessmatrix.

x z 0 8

z o o S (CL. - _,CL. + _CD. - _2CD.) S (CL, + _,CD,)

o o 0 S_(-C_.+ a,C..) -SeCt,

(b) Rigid body, symmetric generalized aerodynamic damping matrix.

27

Z

0

x z 0

(Cn, - _,CL,)

S (CL,+ _iCn.)

- F_[eC.,.

(CD. - _1eL. - eL)

S (CL. + c_ CD°)

- US?_..,.

_l (CD, + CDc, -- ollCL, -- ollCL_,)

S_ (CL,+ CL. + a,Cn,+ oL,CD.)2"07

8

0

0

0

Table C-2. Body axis derivative representation in the rigid-body antisymmetric generalized

aerodynamic stiffness and damping matrix elements.

(a) Rigid body, antisymmetric generalized aerodynamic stiffness matrix.

y 0 S (--eL -- 0tl Cy_) (:1¢1 SCyI I -SCy_

¢ 0 -SbCtp_l SbCl a -SbC_s

¢ o -sbcv , sbcv -sbc 

(b) Rigid body, antisymmetric generalized aerodynamic damping matrix.
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TableC-3. Stabilityaxisderivativerepresentationin therigid-bodyantisymmetric
generalizedaerodynamicstiffnessanddampingmatrixelements.

(a) Rigidbody,antisymmetricgeneralizedaerodynamicstiffnessmatrix.

v ¢ ¢ 6

05 0 Sb(-C,,cosoq+C_sinoq)oq

¢ 0 Sb(-C,_cosoq-Ce, sinoq)al

sc_,

s_(c,.co__,- c..s,._,)
_(_ cos.,÷_,,sin_,)

-scr,

Sb (-Ce6 cos _1 + C,_ sin oq)

Sb (-C,_ cos _1 - Ce, sin oq)

(b) Rigid body, antisymmetric generalized aerodynamic damping matrix.

¢ _,_(-_cos_,)

_,_,,,(_,,,_coso,,:,o,,)
-,-_, b(_o,,:_,,,_,:,o,,)

_1 b (-Ce_ cos oq)

+ ,2_i b (C,_ sins,)

- ,2-_ b (C,_, sin oq )

¢ _, _(-_ _o__,)
- Lr_-i b (Cep sin t_,)

__,_(_.,¢cos_,_,)
-,2_lb(Cet_(sint_,)al)

_1 b (-Cr_ cos oq)

-,2-_1 b (Ct, sin al)

+_b(_,.,,coso,)
+ ,2-_ b (Ct, sin t_,)

0
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Figure 6. Node line comparisons for GVS and STARS analyses for various modes for the X-29A aircraft, symmetric

case.
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Figure 15. Longitudinal loop gains computed with GVS and STARS models for flight condition 1.
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Figure 17. Longitudinal loop gains computed with GVS and STARS models for flight condition 3.
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Figure 18. Longitudinal loop gains computed with GVS and STARS models for flight condition 4.
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Figure 19. Lateral loop gains computed with GVS and STARS models for flight condition 1.
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Figure 20. Lateral loop gains computed with GVS and STARS models for flight condition 2.
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Figure 2 I. Laterat loop gains computed with GVS and STARS models for flight condition 3.
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Figure 22. Lateral loop gains computed with GVS and STARS models for flight condition 4.
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Figure 24. Directional loop gains computed with GVS and STARS models for flight condition 2.
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Figure 27. Longitudinal closed-loop responses calculated using GVS and STARS flexible models for flight condi-
tion 1.
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Figure 29. Longitudinal closed-loop responses calculated using GVS and STARS flexible models for flight condi-tion 3.
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Figure 31. Longitudinal loop gains from flight data, AER07, and STARS for flight condition 1.
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Figure 32. Longitudinal loop gains from flight data, AER07, and STARS for flight condition 2.
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Figure 33. Longitudinal loop gains from flight data, AER07, and STARS for flight condition 3.
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Figure 34. Longitudinal loop gains from flight data, AER07, and STARS for flight condition 4.
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Figure 37. Modal damping and frequency comparisons between flight measured data and STARS for antisymmetric

wing first bending.
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Figure 38. Modal damping and frequency comparisons between flight measured data and STARS for fuselage lateral

bending.
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Figure 38. Continued.
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Figure 39. Modal damping and frequency comparisons between flight measured data and STARS for fin first bending.
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Figure 39. Continued.
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Figure 39. Continued.
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